(a) (i)	correct structure CH ₂ =CC <i>l</i> ₂	[1]
(ii)	because it has a lower <i>M</i> _r or density or its molecules move faster it is lighter ONLY [1] only comment - smaller molecules [0] answer implies or states sieve idea then [0]	[2]
(b) (i)	ester linkage COND polymer chain showing different monomers and continuation -OOC-C ₆ H ₄ -COOCH ₂ CH ₂ O-	[1] [1]
(ii)	fats or lipids	[1]
(iii)	does not decompose easily when heated accept similar statements	[1]
(c) (i)	does not decompose or non-biodegradable shortage of landfill sites or of space visual pollution poisonous/toxic/harmful gases when <u>burnt</u> NOT carbon monoxide, sulphur dioxide. If gas named has to be a correct one eg HC <i>l</i> , HCN dangerous to animals	F
	Any TWO	[2]
(ii)	conserve petroleum or save energy	[1]
	TOT Cheaper	AL = 10

1

Question	Answer	Marks
2(a)	fast(reaction; large(r) surface area;	1
(b)	(dm ³);	1
(c)	moves equilibrium to right; increases yield (of sulfur trioxide)/uses up more sulfur dioxide;	1 1
(d)(i)	moves equilibrium to left; (forward reaction) exothermic;	1
(d)(ii)	d rate; molecules have less energy/move slower; fewer collisions (per second)/fewer particles have the activation energy /fewer collisions have the activation energy;	1 1 1
(e)(i)	moves to right;	1
(e)(ii)	high yield at 2 atm;	1
(f)	vanadium(V) oxide/vanadium pentoxide;	1
(g)	M1 dissolve/react sulfur trioxide in (concentrated) sulfuric acid; add water to product of M1;	1

3(a)	M1 add chlori n e to (potassium) iodi d e solution;		Solution must be implied for M1 A any soluble iodide solution
	M2 red/brown/yellow/orange (solution) is formed;		A black (ppt or solid)
	$\begin{array}{rcl} \text{M3} \\ \text{C}l_2 &+ 2\text{KI} \rightarrow 2\text{KC}l &+ \text{I}_2 \\ \text{C}l_2 &+ 2\text{I} \rightarrow 2\text{C}l &+ \text{I}_2; \end{array}$	3	A multiples I state symbols but KI(aq) would allow the solution aspect of mark in M1
5(b)	M1 (0.013 moles of I and 0.065 moles of F atoms gives a) ratio 1:5;		Award 2 marks for IF_5
	Formula = IF ₅ ;	2	A one mark for I_5F (as ratio is inverted) A one mark for IFl_5 or I_5Fl

Question	Answer	Marks	Guidance
3(c)(i)	example of a reversible reaction including attempts at removing/adding waters of crystallisation OR example of a reaction which under closed conditions would be reversible;	1	 A written description of the reaction e.g. 'Haber process' unless equation is attempted in which case ignore written description A word equations/unbalanced equations A equations without equilibrium arrows I descriptions of physical changes
(c)(ii)	Any two from: (a reaction) M1 which can take place in both directions OR which can be approached from both directions;		I reference to 'closed system' A 'a reaction which can go forwards and backwards' for M1 I 'a reaction with an equilibrium arrow' or with '≓' for M1
	M2 in which concentrations/macroscopic properties do not change (with time); M3 the two reaction rates are equal;	2	R concentrations (of reactants and products) are the same
(d)	M1 equilibrium goes to LHS OR equilibrium goes to reactants side;		 A reaction goes to LHS but R 'equilibrium goes to LHS and to products side' A backward reaction is favoured I less yield or less products
	M2 because the concentration of chlorine decreases;	2	 A 'reactant' for 'chlorine' but not reactants A to replace missing chlorine

Question	Answer	Marks	Guidance
3(e)	M1 equilibrium goes to RHS OR equilibrium goes to products side;		 A reaction goes to RHS but R 'equilibrium goes to RHS and to reactants side' A forward reaction is favoured I more yield or more products
	M2 exothermic reactions are favoured by low temperatures;		A for M1 and M2 'decreasing temperature makes the equilibrium go to RHS'
	M3 the forward reaction is exothermic;	3	A backward reaction is endothermic

(a	(i)	first reaction volume / moles / molecules of reactants and products are different		
		second reaction volume / moles / molecules of reactants and products are the same	[1]	
	(ii)	first reaction (forward) reaction is endothermic second reaction (forward) reaction is exothermic	[1] [1]	
(b)		$C_8H_{18} \rightarrow 2C_4H_8 + H_2$	[1]	
	(ii)	$2H^{\star} + 2e \rightarrow H_2$	[2]	
		or $2H_3O^+ + 2e \rightarrow H_2 + 2H_2O$ accept: -2e on right hand side accept: e note: not balanced = 1		
	(iii)	 chlorine / Cl₂ / [1] cond: water treatment / solvents / plastics / PVC / bleach / disinfectants / HCl / kill bacteria / sterilising water / chlorination <u>of water</u> / swimming pools / pesticides / herbicides / insecticides / germicides / pharmaceuticals [1] 		
		sodium hydroxide/NaOH	[1]	
		cond: making soon / dogroasing / making paper / dotorgants / his dissal / point string	orl	

cond: making soap / degreasing / making paper / detergents / bio-diesel / paint stripper / clearing drains / alumina from bauxite / oven cleaner / bleach [1]

4

5	(a (i)	burn sulfur in air or oxygen or heat a metal sulfide in air	[1]	
	(ii)	bleach for wood pulp/cloth/straw or preserve food or sterilising or making wine or fumigant or refrigerant Accept making paper	[1]	
	(iii)	vanadium(V) oxide accept vanadium oxide or V ₂ O ₅ or vanadium pentoxide oxidation state not essential but if given it has to be (V)	[1]	
	(iv)	rate too slow or rate not economic	[1]	
	(v)	reaction too violent or forms a mist	[1]	
	(b) (i)	add water to yellow powder or to anhydrous salt it would go green	[1] [1]	
	(ii)	change from purple or pink to colourless NOT clear	[1] [1]	
	(iii)	reacts with <u>oxygen</u> in air	[1]	
	(c) number of moles of FeSO ₄ used = $9.12/152 = 0.06$ number of moles of Fe ₂ O ₃ formed = 0.03^* mass of one mole of Fe ₂ O ₃ = 160 g mass of iron(III) oxide formed = $0.03 \times 160 = 4.8 \text{ g}$ number of moles of SO ₃ formed = 0.03 volume of sulfur trioxide formed = $0.03 \times 24 = 0.72 \text{ dm}^3$ If mass of iron(III) oxide greater than 9.12 g , then only marks 1 and 2 available			

Apply ecf to number of moles of $Fe_2O_3{}^{\star}$ when calculating volume of sulfur trioxide. Do not apply ecf to integers

[Total: 16]